Phosphoinositide 3-kinases upregulate system xc(-) via eukaryotic initiation factor 2α and activating transcription factor 4 - A pathway active in glioblastomas and epilepsy.
نویسندگان
چکیده
AIMS Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc(-) imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc(-) and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. RESULTS PI3Ks induce system xc(-) through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. INNOVATION Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc(-). Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. CONCLUSION PI3K-regulated system xc(-) activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate.
منابع مشابه
P 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کاملDEV induce autophagy via the endoplasmic reticulum stress related unfolded protein response
Duck enteritis virus (DEV) can infect ducks, geese, and many other poultry species and leads to acute, septic and highly fatal infectious disease. Autophagy is an evolutionarily ancient pathway that plays an important role in many viral infections. We previously reported that DEV infection induces autophagy for its own benefit, but how this occurs remains unclear. In this study, endoplasmic ret...
متن کاملProtective Mechanism of KIOM-4 in Streptozotocin-Induced Pancreatic β-Cells Damage Is Involved in the Inhibition of Endoplasmic Reticulum Stress
Endoplasmic reticulum stress-mediated apoptosis plays an important role in the destruction of pancreatic β-cells and contributes to the development of type 1 diabetes. The present study examined the effect of KIOM-4, a mixture of four plant extracts, on streptozotocin- (STZ-) induced endoplasmic reticulum (ER) stress in rat pancreatic β-cells (RINm5F). KIOM-4 was found to inhibit STZ-induced ap...
متن کاملD4F alleviates macrophage-derived foam cell apoptosis by inhibiting CD36 expression and endoplasmic reticulum stress-CHOP pathway
This study was designed to explore the protective effect of D4F, an apolipoprotein A-I mimetic peptide, on oxidized low-density lipoprotein (ox-LDL)-induced endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) pathway-mediated apoptosis in macrophages. Our results showed that treating apoE mice with D4F decreased serum ox-LDL level and apoptosis in atherosclerotic lesions with conc...
متن کاملRifampicin Protects PC12 Cells from Rotenone-Induced Cytotoxicity by Activating GRP78 via PERK-eIF2α-ATF4 Pathway
Rifampicin has been proposed as a therapeutic candidate for Parkinson's disease (PD). We previously showed that rifampicin was neuroprotective in PD models in vivo and in vitro. However, the molecular mechanisms underlying are not fully elucidated. In this study, using the comprehensive proteomic analysis, we identified that the 78 kDa glucose-regulated protein (GRP78), a hallmark of the unfold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antioxidants & redox signaling
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2014